Nutrient limitation in soils exhibiting differing nitrogen availabilities: what lies beyond nitrogen saturation?
نویسندگان
چکیده
The nature of nutrient limitation in large areas of temperate forest may be changing due to human activities. As N availability in these forests increases, other nutrients could increasingly constrain productivity and other ecosystem processes. To determine the nature of nutrient limitation (N, P, and Ca) in forest soils exhibiting differing N availability, we conducted three field studies in the Fernow Experimental Forest, West Virginia, USA. The first used a ubiquitous herbaceous species, Viola rotundifolia, to compare indices of N availability to the activity of root-associated phosphomonoesterase (PME) activity at two spatial scales. The second study used fertilized, root in-growth cores to assess the extent of N, P, and Ca limitation. Finally, we measured the root-associated PME activity of V. rotundifolia growing in experimental plots that have received various combinations of nutrient additions and harvest treatments. For entire watersheds, stream water nitrate concentrations were positively related to PME activities (R2 = 0.986). For small plots, PME activities were positively associated with soil nitrate availability (R2 = 0.425), and to a lesser extent with the leaf N concentrations (R2 = 0.291). Root growth into microsites fertilized with P was greater than growth into microsites fertilized with either N or Ca, especially in watersheds with high N availability. Experimental additions of N increased the root-associated PME activity of V. rotundifolia, supporting the causality of the relationship between N availability and PME activity. Collectively, our results indicate that, as N availability increases, P becomes increasingly limiting at the sites examined. Understanding how nutrient limitations change during N saturation should improve ecosystem models and better inform our attempts to mitigate any undesired effects.
منابع مشابه
Effect of Acidic Biochars on Some Chemical Properties and Nutrient Availabilities of Calcareous Soils
Low organic matter content and alkaline pH of calcareous soils in arid and semi-arid regions are the main reasons for the low nutrient availabilities for plants in these soils. One way to improve the chemical properties and fertility of calcareous soils is the application of organic substances such as biochar produced from pyrolysis of organic wastes. However, biochars have an almost predominan...
متن کاملNitrogen Nutrition of Trees in Temperate Forests—The Significance of Nitrogen Availability in the Pedosphere and Atmosphere
Nitrogen (N) is an essential nutrient that is highly abundant as N2 in the atmosphere and also as various mineral and organic forms in soils. However, soil N bioavailability often limits the net primary productivity of unperturbed temperate forests with low atmospheric N input. This is because most soil N is part of polymeric organic matter, which requires microbial depolymerization and mineral...
متن کاملSubstrate and nutrient limitation of ammonia-oxidizing bacteria and archaea in temperate forest soil
Ammonia-oxidizing microbes control the rate-limiting step of nitrification, a critical ecosystem process, which affects retention and mobility of nitrogen in soil ecosystems. This study investigated substrate (NH4þ) and nutrient (K and P) limitation of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) in temperate forest soils at Coweeta Hydrologic Laboratory, a long-term eco...
متن کاملForest calcium depletion and biotic retention along a soil nitrogen gradient.
High nitrogen (N) accumulation in terrestrial ecosystems can shift patterns of nutrient limitation and deficiency beyond N toward other nutrients, most notably phosphorus (P) and base cations (calcium [Ca], magnesium [Mg], and potassium [K]). We examined how naturally high N accumulation from a legacy of symbiotic N fixation shaped P and base cation cycling across a gradient of nine temperate c...
متن کاملEcosystem response to nutrient enrichment across an urban airshed in the Sonoran Desert.
Rates of nitrogen (N) deposition have increased in arid and semiarid ecosystems, but few studies have examined the impacts of long-term N enrichment on ecological processes in deserts. We conducted a multiyear, nutrient-addition study within 15 Sonoran Desert sites across the rapidly growing metropolitan area of Phoenix, Arizona (USA). We hypothesized that desert plants and soils would be sensi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ecology
دوره 88 1 شماره
صفحات -
تاریخ انتشار 2007